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Abstract

The stress state and e�ective elastic moduli of an isotropic solid containing equally oriented penny-shaped cracks
are evaluated accurately. The geometric model of a cracked body is a spatially periodic medium whose unit cell
contains a number of arbitrarily placed aligned circular cracks. A rigorous analytical solution of the boundary-value

problem of the elasticity theory has been obtained using the technique of triply periodic solutions of the Lame
equation. By exact satisfaction of the boundary conditions on the cracks' surfaces, the primary problem is reduced
to solving an in®nite set of linear algebraic equations. An asymptotic analysis of the stress ®eld has been performed

and the exact formulae for the stress intensity factor (SIF) and e�ective elasticity tensor are obtained. The numerical
results are presented demonstrating the e�ect of the crack density parameter and arrangement type on SIF and
overall elastic response of a solid and comparison is made with known approximate theories. 7 2000 Elsevier

Science Ltd. All rights reserved.
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1. Introduction

The cracks are probably the most common structural defects in solid materials. Their presence
could signi®cantly in¯uence the sti�ness and brittle strength of a solid. Thus, for example, the
elastic moduli of the solid decrease with the increasing crack density, and the oriented cracks
render the overall material anisotropic. The cracks also induce signi®cant local stress concentrations
and thereby increase the risk of rupture. The stress intensity factor (SIF) at the crack's tip is
often used to predict the failure load and, therefore, has the theoretical as well as practical
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interest. Both the elastic moduli and SIF are strongly dependent on the density and the

geometrical arrangement of cracks. Hence, for a reliable prediction of elastic behavior of a cracked

solid, it is necessary: (1) to use a geometrical model that re¯ects the structure of actual material

and (2) to account for the crack interactions accurately.

The problem of predicting the overall elastic properties of cracked solids has been examined by

a number of investigators. Practically, all the approaches developed for predicting the elastic

properties of composite materials have also been applied to the materials with cracks. An elliptic

crack can be thought of as an ellipsoidal cavity with one of its axes tending to zero. In other

words, a ``penny-shaped'' crack used by most investigators to model the cracks in a (three-

dimensional) solid is nothing but an in®nitely thin oblate spheroidal cavity. Thus, in principle, all

the results known for composites with ellipsoidal inclusions may be extended to cracked materials

by proper limiting process. The variational bounds for the e�ective moduli of a cracked material

were established by Willis (1980). Among the methods accounting for the crack interactions in an

approximate way, we mention the self-consistent scheme (Budiansky and O'Connell, 1976; Hoenig,

1979; Laws and Brockenbrough, 1987), the Mori±Tanaka's method (Benveniste, 1986), and the

di�erential scheme (Salganik, 1973; Heyney and Pomphrey, 1982; Laws and Dvorak, 1987; Hashin,

1988). All these methods are based on so-called ``one-particle'' model, being a single crack

embedded in an ``e�ective'' homogeneous medium. None of them de®ne explicitly (and, hence, take

into account) the actual microstructure of a cracked solid: the only structure parameter used is the

number density of cracks.

One possible way to account for the crack orientation statistics was developed by Kachanov (1987,

1993), who introduced the crack density tensor and used the tensorial linearization of the elastic

potential to obtain a simple estimate for the e�ective elastic moduli. An alternate approach, known in

the composite mechanics as the ``regularization'' method (e.g., Golovchan et al., 1993), is based on

modeling the structure of actual non-homogeneous solid by a periodic medium whose unit cell contains

a number of inclusions. This approach appears to be promising in that the detailed geometric

arrangement of the inclusions can be speci®ed explicitly. Moreover, due to deterministic nature of the

given model, it is possible to state and solve accurately the periodic boundary-value problems of interest

and to thereby account for the interactions among the inclusions in a rigorous manner. Recently, this

approach was combined successfully with the multipole expansion technique to study the elastic

behavior of the composites reinforced by the spherical (Sangani and Mo, 1997) and spheroidal (Kushch,

1998) particles. As to the cracked materials, only the simplest periodic structures were considered before.

For a solid containing a simple orthogonal array of penny-shaped cracks, an approximate solution was

obtained by Nemat-Nasser et al. (1993), who used the Fourier series technique and assumed the

homogenization eigenstrains to be uniform. The same structure was also analyzed by Fares (1993), who

used the boundary element method to take into account interactions of a ®nite number of cracks. Thus,

to the best of our knowledge, only approximate solutions are available at present in the mechanics of

3D solids with cracks.

In the present paper, an accurate series method will be developed based on the generalized periodic

structure model of a cracked solid. Section 2 describes the model and the governing equations. Section 3

outlines the method of solution, which is a direct extension of the method proposed by Kushch (1997)

to study elastic behavior of a heterogeneous solid with spheroidal interfaces. The exact expressions for

the e�ective moduli are derived by averaging the stress and strain tensors. Also given is a series

expansion for the SIF obtained by an asymptotic analysis of the stress ®eld singularity at the crack's tip.

Finally, in Section 4, the results of numerical simulations for the solids with various arrangements of

cracks are presented and compared with known approximate theories.
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2. Statement of the problem

Let us consider an isotropic medium containing a spatially periodic array of equally oriented penny-
shaped cracks. Its elementary unit cell in the form of parallelepiped with the sides a1, a2 and a3
containing the centers of N cracks is shown in Fig. 1. The volume of this unit cell is V � a1a2a3: The
global Cartesian coordinate system Oxyz is introduced so that the crack's surfaces are parallel to the
Oxy plane. Also, we de®ne the local Cartesian coordinate systems Opxpypzp, p � 1, N: The origin of pth
coordinate system Op coincides with the center of pth crack of radius dp, the axes Opxp, Opyp and Opzp
are parallel to the global axes Ox, Oy and Oz, respectively. The vector Rp��Xp, Yp, Zp� determines the
position of pth crack. Also, rp��xp, yp, zp� is the local radius vector and r � �x, y, z� is the global one:
rp � rq � Rpq and r � rp � Rp, where Rpq � Rp ÿ Rq: The placement of the rest of the cracks is
determined by adding to Rp the translation vector Vn�n1a1ex�n2a2ey�n3a3ez, where ni are the integers,
ÿ1 < n1, n2, n3 <1:

Now, we introduce the oblate spheroidal coordinates �fp, xp, Zp, jp�, related to the Cartesian ones by
(Hobson, 1931)

xp � iyp � fpxp �Zp exp
ÿ
ijp

�
, zp � fp �xpZp;

�x
2

p � x2
p ÿ 1, �Z2

p � 1ÿ Z2
p ; 1Rxp <1, jZp jR1, 0Rjp < 2p: �1�

The equation (1) for xp � const describes a family of confocal oblate spheroids. In particular, the value
xp � 1 corresponds to the surface of pth crack coinciding with the focal disc of pth local spheroidal
coordinate system. It was shown elsewhere (Kushch, 1998) that the spheroidal coordinates is quite
natural and useful to treat the crack problems because they provide an e�cient way to satisfy the
boundary conditions of the crack's surface.

We suppose that the stress state of a cracked medium is induced by the remote constant strain tensor
ÃE � Eij: The displacement vector u in a solid phase satis®es the Lame equation

Fig. 1. Unit cell of a generalized periodic structure model of cracked solid.
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2�1ÿ n�r�r � u� ÿ �1ÿ 2n�r � r � u � 0 �2�
where n is the Poisson's ratio. The crack's surfaces are assumed to be load-free:

Tx�u�
��
xq�1� 0, q � 1, 2, . . . ,N; �3�

where Tx�sxex�txZeZ�txjej is a surface traction vector. In the limiting case xp � 1 ��xp � 0), we have

Tx � Tz � txzex � tyzey � szez: �4�
Due to periodicity of the structure and the uniformity of the external loading, the resulting strain and
stress ®elds are macroscopically uniform and, hence, periodic functions of spatial coordinates. In this
case, the displacement vector u can be represented as a sum of the linear and periodic terms:

u � ÃE � r� u1, �5�
where

u1�r� � u1�rÿ a1ex � � u1�rÿ a2ey� � u1�rÿ a3ez � �6�

and ÃE has a sense of macroscopic strain tensor, i.e.

Eij � �eij � 1

2V

�
Se

�uinj � ujni � dS: �7�

Here, Se is the external boundary of unit cell and ni are the Cartesian components of outward unit
normal vector at the cell boundary. We will suppose ÃE to be given: thus, the problem is to construct the
periodic vectorial function u1 in such a way so as to satisfy the equilibrium equation (2) and boundary
conditions (3).

3. Method of solution

The basic method is described in detail elsewhere (Kushch, 1996, 1997). Here, we brie¯y outline the
important steps. We write u1 as a series

u1�r� �
XN
p�1

U�p�, U�p� �
X3
i�1

X1
t�1

Xt
s�ÿt

A
�i��p�
ts S��i�ts

ÿ
rp, fp

�
, �8�

where A
�i ��p�
ts are arbitrary constants. The vectorial functions

S��i�ts �r, f� �
X

n

S�i�ts �r� Vn, f� �9�

are triply periodic singular solutions of the Lame equation (Kushch, 1997) and S
�i �
ts are the singular

vectorial solutions of Eq. (2) given by formula (A1) of Appendix A, where in the case of penny-shaped
cracks, one should put x�0�p � 0:

The displacement vector in the form (8) and (9) satis®es the di�erential equation (2) and the
periodicity conditions (6). To satisfy the boundary conditions (3) for, say, the qth crack, we need to
have a local expansion of u in the qth spheroidal coordinate system. Such an expansion of the linear
part of Eq. (5) has a form
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ÃE � r �
X3
i�1

X1
t�0

Xt
s�ÿt

e
�i��q�
ts s�i�ts

ÿ
rq, fq

�
, �10�

where s
�i ��q�
ts are the regular partial solutions of the Lame equation (A2) and

e
�1��q�
10 � E13Xq � E23Yq � E33Zq;

e
�1��q�
11 � ÿe�1��q�1, ÿ1 � �E11 ÿ iE12 �Xq � �E21 ÿ iE22 �Yq � �E31 ÿ iE32 �Zq;

e
�3��q�
00 � fq

2�2nÿ 1� �E11 � E22 � E33 �;

e
�1��q�
20 � fq

3
�2E33 ÿ E11 ÿ E22�;

e
�1��q�
21 � ÿe�1��q�2, ÿ1 � fq�E13 ÿ iE23 �;

e
�1��q�
22 � e

�1��q�
2, ÿ2 � fq�E11 ÿ iE22 ÿ 2E12 �; �11�

all other e
�i ��q�
ts are equal to zero.

The series expansion of the periodic part of u, obtained from Eq. (8) with the aid of addition
theorems for the singular partial solutions (Kushch, 1996)

S�i�ts
ÿ
rp, fp

� �X3
j�1

X1
k�0

Xk
l�ÿk

Z�i��j�tksl

ÿ
Rpq, fp, fq

�
s
�j�
kl

ÿ
rq, fq

�
, i � 1, 2, 3; t � 1, 2, . . . ; jsjRt; �12�

has a form

u1�rq� �
X3
i�1

X1
t�1

Xt
s�ÿt

A
�i��q�
ts S�i�ts

ÿ
rq, fq

��X3
i�1

X1
t�0

Xt
s�ÿt

e
�i��q�
ts s�i�ts

ÿ
rq, fq

�
, �13�

where

a
�i��q�
ts �

XN
p�1

X3
j�1

X1
k�0

Xk
l�ÿk

Z��j��i�ktls

ÿ
Rpq, fp, fq

�
A
�j��p�
kl

and

Z��i��j�tksl

ÿ
Rpq, fp, fq

� �X
n

Z�i��j�tksl

ÿ
Rpq � Vn, fp, fq

�
: �14�

The explicit form of the expansion coe�cients Z�i ��j �tksl as well as the e�cient technique for calculating the
sums (14) are given in Kushch (1997). Substituting the expansions (10) and (13) into Eq. (5) and then
into Eq. (3), one obtains, after, some algebra, an in®nite set of linear algebraic equations in unknowns
A
�i ��p�
ts which can be written in the matrix form as
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TG
�q�
t �n�A�q�t � TM

�q�
t �n�a�q�t � ÿTM�q�t �n�e�q�t , q � 1, 2, . . . ,N; t � 1, 2, . . . �15�

Here, the vector A
�q�
t contains unknowns A

�i ��q�
t�iÿ2, s and the vectors a

�q�
t and e

�q�
t are composed from the

values a
�i ��q�
tÿi�2, s and e

�i ��q�
tÿi�2, s, respectively; the matrices TGt and TMt are de®ned in Kushch (1996). The

in®nite set (15) has the normal type determinant and, therefore, its solution can be found with any
desirable accuracy by solving the truncated system (15) with tRtmax:

Now, we ®nd the e�ective, or macroscopic, sti�ness tensor ÃC � fCijkl g of a cracked solid de®ned by
the relation

�sij � Cijkl�ekl, �sij � 1

V

�
V

sij dV: �16�

All we need to determine ÃC is to derive the expressions for �sij and calculate them for selected values of
�ekl � Ekl:
The integration procedure used here is somewhat di�erent from that applied by Kushch (1997) and

does not imply integration over the inclusion volume. Because in the solid phase sij�C
�0�
ijklekl� 2m�eij�

dij n
1ÿ2nekk�, one obtains easily with the aid of Gauss' theorem

�sij � 1

V

�
V

sij dV � C
�0�
ijkl

1

V

�
V

ekl dV � C
�0�
ijkl

24�ekl � 1

2V

XN
p�1

�
Sp

�uknl � ulnk � dS

35,
where Sp is the surface of pth crack. Calculation of the surface integrals uses the expansions (10) and
(13) and gives us

�s11 � �s22 � �s33
3K

� E11 � E22 � E33 ÿ
�
1� 4m

3K

�XN
p�1

~fpA
�1��p�
00 ; �17�

2 �s33 ÿ �s11 ÿ �s22
2m

� 2E33 ÿ E11 ÿ E22 � 4�1ÿ n�
XN
p�1

~fpA
�3��p�
20 ;

�s11 ÿ �s22 ÿ 2i �s12
2

� E11 ÿ E22 ÿ 2iE12 � 8�1ÿ n�
XN
p�1

~fpA
�3��p�
22 ;

�s13 ÿ i �s23
2m

� E13 ÿ iE23 � 4�1ÿ n�
XN
p�1

~fpA
�3��p�
21 ;

where ~fp � 4p�fp�2=3V and K � �2m�1� n��=�3�1ÿ 2n�� is the bulk modulus of the matrix material. The
expressions (17) are exact and contain only the ®rst few unknowns A

�i ��p�
ts which can be found from the

truncated system (15) at moderate values of index t � tmax retained.
Note that to solve the problems (2) and (3) with the macroscopic stresses �sij prescribed as the external

loading parameters, it is su�cient to invert the relations (17) and substitute the expressions of Eij

obtained in the right-side vector of Eq. (15). This type of problem statement is natural and convenient,
in particular, when the stress concentration in composite or SIF in a cracked material is considered. The
last ones are de®ned by the relations (e.g., Budiansky and O'Connell, 1976)
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KI � lim
r40

�������
2pr
p

sz
���
z�0

; KII � lim
r40

�������
2pr
p

trz
���
z�0

; KIII � lim
r40

�������
2pr
p

tzj
���
z�0

;

where r is the distance from the point in the plane z � 0 outside the crack to the crack's tip. Taking into
account that

�������
2pr
p

0
�����
pf

p
�x, we rewrite these relations as

KI�����
pf

p � lim
x41

�xsz
����
Z�0

;
KII�����
pf

p � lim
x41

�xtrz
����
Z�0

;
KIII�����
pf

p � lim
x41

�xtzj
����
Z�0
: �18�

An asymptotic analysis of the stress ®eld near the crack's tip gives a series expansion of SIF. For
example, KI is given by�����

fp
p

r
K
�p�
I �jp �
2m

�
X1
t�0

Xt
s�ÿt

0
� ÿ 1��t�s�=2

�
A
�1��p�
ts � 2

�t� 1�A
�2��p�
t�1, s �

�
4�1ÿ n�
t�2tÿ 1� ÿ �1ÿ 2n�

�
A
�3��p�
ts

�
� exp

ÿ
isjp

�
,

�19�

where the prime over the internal sum means that it contains only the terms with even �t� s�: For the
details of derivation, see Kushch (1998).

Table 1

Convergence test of E �33, m
�
13 and hK �I i with increasing tmax

tmax a1 � 2:2 a1 � 2:01

E �33=E m�13=m hK �I i=KI1 E �33=E m�13=m hK �I i=KI1

1 0.4544 0.4511 0.639 0.3396 0.3412 0.790

3 0.4306 0.4401 1.029 0.3075 0.3249 1.364

5 0.4302 0.4401 1.101 0.3063 0.3231 1.515

7 0.4301 0.4400 1.087 0.3062 0.3228 1.528

9 0.4301 0.4400 1.082 0.3061 0.3226 1.539

11 0.4301 0.4400 1.083 0.3061 0.3226 1.551

13 0.4301 0.4400 1.083 0.3060 0.3225 1.559

15 0.4301 0.4400 1.083 0.3060 0.3225 1.561

Table 2

E �33�a1, a1=a3�=E of a solid containing SO-array of penny-shaped cracks: N � 1

a1 � a2 a1=a3

1 2 4 8 16

5.0 0.961 0.932 0.907 0.894 0.888

4.0 0.926 0.878 0.845 0.830 0.821

3.0 0.834 0.753 0.709 0.688 0.675

2.5 0.729 0.623 0.568 0.540 0.523

2.2 0.619 0.496 0.430 0.396 0.375

2.1 0.566 0.439 0.370 0.333 0.310

2.01 0.501 0.374 0.306 0.268 0.243
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4. Numerical results

The model considered (Fig. 1) is quite general and has a number of parameters. We restrict our

numerical analysis to the case of equisized cracks �fp � f � 1�, the solids with the following three cracks
arrangement kinds will be studied:

1. the simple orthogonal (SO) array with a1 � a2, Xp � Yp � a1=2, Zp � �pÿ 1
2�a3=N, p � 1;

2. the body-centered orthogonal (BC) array with a1 � a2, Xp � Yp � a1=4 for p odd and Xp � Yp �
3a1=4 for p even, Zp � �pÿ 1

2�a3=N, p � 1, 2;

3. the quasi-random (QR) array, for which a1 � a2 � a3 � a and Xp, Yp and Zp �p � 1, N� are the
random numbers, uniformly distributed in the interval �0, a�:

The values which we will calculate are the normalized Young's modulus E �33=E and shear modulus

m�13=m given by the relations E �33 � 1=D3333 and m�13 � 1=4D1313, where ÃD � ÃC
ÿ1

is the e�ective
compliance tensor and E � 2m�1� n� is the Young's modulus of the cracks-free solid. To make the

results for di�erent arrays comparable, we adopt n � 0:25 for all the computations. An accuracy of the

numerical data presented below can be estimated from Table 1 which shows the convergence of the
e�ective elastic properties and the normalized opening mode SIF, hK �I i=KI1 with tmax: Here, KI1 is the

value of SIF for a single penny-shaped crack and

Table 3

m�13�a1, a1=a3�=m of a solid containing SO-array of penny-shaped cracks: N � 1

a1 � a2 a1=a3

1 2 4 8 16

5.0 0.982 0.963 0.926 0.872 0.823

4.0 0.964 0.929 0.863 0.781 0.722

3.0 0.915 0.837 0.714 0.599 0.531

2.5 0.852 0.732 0.569 0.439 0.371

2.2 0.777 0.623 0.440 0.306 0.235

2.1 0.736 0.571 0.385 0.251 0.178

2.01 0.682 0.506 0.322 0.191 0.115

Table 4

E �33�a1, a1=a3�=E of a solid containing BC-array of penny-shaped cracks: N � 2

a1 � a2 a1=a3

1/2 1 2 4 8

5.0 0.961 0.922 0.862 0.812 0.787

4.0 0.925 0.852 0.752 0.688 0.656

3.0 0.830 0.680 0.496 0.404 0.361

2.5 0.723 0.517 0.283 0.170 0.125

2.2 0.611 0.387 0.162 0.066 0.041

2.1 0.559 0.336 0.127 0.044 0.024

2.01 0.500 0.280 0.094 0.026 0.011
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hK ��p�I i �
1

2p

� 2p

0

K
�p�
I �jp� djp

� m�������
pfp

p X1
t�0
� ÿ 1�t

�
A
�1��p�
2t, 0 �

2

�2t� 1�A
�2��p�
2t�1, 0 �

�
2�1ÿ n�
t�4tÿ 1� ÿ �1ÿ 2n�

�
A
�3��p�
2t, 0

�
is the average value of K �I on the crack's contour. The results presented in Table 1 correspond to a solid
with SO-array of cracks: N � 1, a1 � a2 � 4a3: We see that the convergence is rapid, especially for the
e�ective moduli, and depends on the value a1 � a2 which determines the distance between the adjacent
coplanar cracks. As calculations show, the value tmax � 7 is su�cient in most cases to compute the
e�ective moduli to a three-digit accuracy. The convergence rate decreases signi®cantly only in the case
of nearly touching cracks. However, even for a1 � 2:01, when the closest distance between the crack's
edges is as small as 1% of the crack's radius, the value tmax � 15 provides, as a minimum, three-digit
accuracy of the calculated values. Therefore, all the subsequent computations for the solids with
periodic structure (SO or BC) were performed with tmax � 15: To give some idea of computational
e�ciency of the method, we mention that solving the problem with above tmax and N � 16 takes about 5
min of CPU time on PC with Pentium II 266 MHz processor. However, for the solid with QR-array of
cracks, the value tmax � 7 was adopted in order to reduce the computational cost. This choice was
motivated by the fact that variation of the computed values from one quasi-random structure realization
to another is much greater than possible improvement in accuracy of solution by taking into account
the higher harmonics.

We begin with the analysis of the e�ective properties of periodically cracked solids. Tables 2 and 3
give the results for E �33 and m�13 of a solid weakened by the SO-array of penny-shaped cracks for

Table 5

m�13�a1, a3=a1�=m of a solid containing BC-array of penny-shaped cracks: N � 2

a1 � a2 a1=a3

1/2 1 2 4 8

5.0 0.982 0.964 0.928 0.858 0.759

4.0 0.965 0.932 0.864 0.743 0.605

3.0 0.916 0.847 0.715 0.505 0.324

2.5 0.854 0.749 0.571 0.327 0.141

2.2 0.779 0.643 0.445 0.221 0.080

2.1 0.739 0.591 0.392 0.186 0.066

2.01 0.692 0.524 0.329 0.150 0.053

Table 6

E �33=E of a solid with SO-array of penny-shaped cracks: N � 1, a1 � a2 � 8a3 (comparison with the results of previous

investigators)

Reference e

0.2 0.4 0.6 0.6 1.0

Nemat-Nasser et al. (1993) 0.776 0.639 0.523 0.417 0.319

Fares (1993) 0.714 0.557 0.433 0.329 ±

Eq. (17), tmax � 15 0.763 0.614 0.486 0.386 0.260
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indicated values of ai: It is seen from these tables that the cracks reduce greatly the overall sti�ness of a
solid: the extent of reduction depends on the crack density parameter e � N=�a1a2a3�, equal to V ÿ1 in
our case, as well as on the lattice parameter a1=a3: Note that for this speci®c con®guration, E �33 remains
®nite even as e41:

lim
a340

E �33=E � 1ÿ p�f=a1 �2, �20�

equal to the longitudinal Young's modulus of a solid with a square array of cylindrical holes.
Next, we consider a solid with the BC-array of cracks, N � 2: The computed values of E �33 and m�13

for this solid are presented in Tables 4 and 5, respectively. Their comparison with the corresponding
results presented in Tables 2 and 3 demonstrates clearly the structure e�ect on the e�ective elastic

Fig. 2. Comparison of the values E �33 computed by the di�erent methods: SO Ð Eq. (17), SO-structure �a1 � a2 � 8a3, N � 1�; BC
Ð Eq. (17), BC-structure �a1 � a2 � 4a3, N � 2�; QR Ð Eq. (17), QR-structure; SC Ð self-consistent scheme (Hoenig, 1979); DS

Ð di�erential scheme (Laws and Dvorak, 1987); UB Ð upper bound (Willis, 1980); NN Ð Nemat-Nasser et al. (1993); SK Ð

Sayers and Kachanov (1991).

Table 7

E �33, m
�
13 and hK �I i of solids containing QR-array of penny-shaped cracks: N � 16

e E �33=E m�13=m hK �I i=KI1

0.1 0.639 0.799 1.06

0.2 0.453 0.667 1.15

0.3 0.299 0.543 1.36

0.4 0.209 0.452 1.56

0.5 0.153 0.374 1.73

0.6 0.106 0.316 1.95

0.7 0.092 0.278 2.06

0.8 0.069 0.238 2.36

0.9 0.054 0.200 2.68
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moduli: the BC-array of cracks induces much greater sti�ness decrease than the SO-array with the same
crack density value; in particular, for BC-structure, E �3340 as e41:
The e�ective sti�ness of a solid containing SO-arrays of equal penny-shaped cracks was determined

by Nemat-Nasser et al. (1993), who used a Fourier series technique, and by Fares (1993), who used the
boundary element method. The results of these investigators for E �33 for indicated values of e with a1 �
a2 � 8a3 are compared with the results obtained by the present investigation in Table 6. It may be noted
that the solution obtained by Nemat-Nasser et al. (1993), who used an assumption of uniform
homogenization eigenstrains, exactly corresponds to our solution with tmax � 1 in Eq. (15). Comparison
of these data with the accurate values obtained from Eq. (17) with tmax � 15 shows that the Nemat-
Nasser's technique gives a reasonably good approximation at moderate crack densities �e < 0:5 for the
chosen con®guration). For greater values of damage parameter, the e�ect of higher harmonics must be
taken into account. Note also, that an alternate variant of the above mentioned technique, based on the
piece wise constant approximation of the homogenization eigenstrains, gives much better agreement with

Fig. 3. Comparison of the values m�13 computed by the di�erent methods: SO Ð Eq. (17), SO-structure �a1 � a2 � 8a3, N � 1�; BC
Ð Eq. (17), BC-structure �a1 � a2 � 4a3, N � 2�; QR Ð Eq. (17), QR-structure; SC Ð self-consistent scheme (Hoenig, 1979); DS

Ð di�erential scheme (Laws and Dvorak, 1987); NN Ð Nemat-Nasser et al. (1993); SK Ð Sayers and Kachanov (1991).

Table 8

hK �I i=KI1 in a solid with SO-array of penny-shaped cracks: N � 1

a1=a2 a1=a3

1 2 4 8 16

5.0 1.01 0.93 0.74 0.54 0.40

4.0 1.03 0.92 0.72 0.53 0.39

3.0 1.08 0.96 0.75 0.56 0.42

2.5 1.19 1.08 0.87 0.66 0.49

2.2 1.39 1.28 1.08 0.86 0.64

2.1 1.55 1.45 1.23 1.00 0.75

2.01 2.02 1.87 1.56 1.24 0.93
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the accurate solution (the hollow circles in Fig. 2). Unlike the Nemat-Nasser's approach, where an
interaction of all the cracks is accounted for (although only in approximate way), in the work by Fares
(1993), the numerical BEM technique was applied only to a ®nite number of interacting cracks. As a
result, the numerical data reported there, greatly underestimate the exact solution.

However, in a majority of works on elasticity of cracked solids, a somewhat di�erent geometrical
model pioneered by Hoenig (1979) is adopted. Namely, the equally sized and oriented penny-shaped
cracks are supposed to be randomly, statistically uniformly distributed in an isotropic medium. It is
obvious that the model considered by us allows to approach this structure type. To this end, we
consider the cubic unit cell �a1 � a2 � a3� and determine the position of the crack centers Rp with the
aid of random number generator. To make the results independent of the speci®c con®guration chosen,
the computed data were averaged over 30 numerical experiments of the same kind. As calculations
show, the number of cracks N � 16 is reasonably large to make the results only slightly sensitive to N as
well as to the shape of the averaging volume (structure cell). The computed values of E �33, m�13 and
hK �I i=KI1 for solids containing QR-array of cracks are summarized in Table 7 and presented by the

Table 9

hK �I i=KI1 in a solid with BC-array of penny-shaped cracks: N � 2

a1=a2 a1=a3

1/2 1 2 4 8

5.0 1.02 1.06 1.02 0.83 0.62

4.0 1.04 1.11 1.10 0.89 0.68

3.0 1.10 1.24 1.45 1.35 1.12

2.5 1.21 1.38 1.86 2.07 1.71

2.2 1.41 1.58 2.24 2.90 2.42

2.1 1.58 1.76 2.51 3.47 3.44

2.01 2.04 2.28 3.41 5.32 6.52

Fig. 4. Comparison of the values hK �I i computed by the di�erent methods: SO Ð Eq. (17), SO-structure �a1 � a2 � 4a3, N � 1�;
NN Ð Nemat-Nasser et al. (1993) (uniform eigenstrains); BE Ð boundary element method (Fares, 1993).
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solid circles in Figs. 2, 3 and 5. It is of interest to compare these data with those obtained by other
authors. Some results of such a comparison are presented in Figs. 2 and 3. Interestingly, the values E �33
calculated by us for a QR-structure (solid circles) meet the upper variational bound by Willis (1980) and
lie on the tiny interval between the values predicted by Sayers and Kachanov (1991) and by the
di�erential method (e.g., Laws and Dvorak, 1987). The self-consistent scheme (Hoenig, 1979)
underestimates these results. Note that the values of E �33 for a solid with SO-array of cracks �a1 � a2 �
8a3, N � 1� reported by Nemat-Nasser et al. (1993) as well as those obtained from Eq. (17) lie far above
the Willis' bound. On the contrary, the Young's modulus of a solid with BC-array of cracks �a1 � a2 �
4a3, N � 2� for e > 0:3 meets the variational bound and, for e > 0:4, is close enough to the data
obtained for the solid with randomly placed cracks. Hence, this simple periodic structure may serve as
some approximation of a randomly cracked body.

The analogous comparison for the m�13=m are presented in Fig. 3. The values of e�ective shear modulus
obtained from the theories compared lie more closely than in the previous case. Also, the accurate
values m�13 for SO-, BC- and QR-structures are not so far from one another meaning that the e�ective
shear modulus is relatively less structure-sensitive parameter. Once again, we note that the values of m�13
for the BC- and QR-structures are close to each other. Thus, the BC-structure is a better approximation
of randomly cracked body than a medium with SO-array of cracks.

A limited number of works are known in literature where the SIF in a cracked solid is studied. The
reason is, above all, that SIF is essentially local and highly structure-sensitive parameter. Its reliable
prediction requires the structure of a cracked solid to be speci®ed in detail and the corresponding
boundary-value problem to be solved with su�cient accuracy. The method presented here provides
calculation of a detailed SIF distribution along the perimeter of each speci®c crack (Eq. (19)) as well as
its mean value (Eq. (20)). In Tables 8 and 9, the values hK �I i=KI1 are presented for the solids with SO-
and BC-arrays of cracks, respectively. It is seen from these tables that the cracks interact in complex
ways. For the SO-structure, the overlapping cracks shield each other and decrease the SIF, whereas the
adjacent coplanar cracks amplify each other and, thus, increase it. The resulting value appears to be

Fig. 5. E�ect of structure type on hK �I i: SO Ð Eq. (17), SO-structure �a1 � a2 � 8a3, N � 1�; BC Ð Eq. (17), BC-structure

�a1 � a2 � 4a3, N � 2�; QR Ð Eq. (17), QR-structure.
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strongly dependent on the ratio of periods a1, a2 and a3: The same tendency takes place for the BC-
structure; however, in this case, hK �I i does not reduce with a1=a3 but grows rapidly, especially for the
closely packed cracks in the Oxy-plane.

Now, we compare our results with those reported by Nemat-Nasser et al. (1993) and Fares (1993)
using the fact that SIF is proportional to the crack opening displacement (e.g., Irwin, 1962). The
dependencies hK �I i�e� for a solid with SO-array of cracks �a1 � a2 � 4a3, N � 1� obtained by these
methods are plotted in Fig. 4. It should be noted that all the theories predict correctly the non-
monotonic behavior of hK �I i; at the same time, satisfactory agreement of absolute values takes place
only for a very small crack density. This is quite natural because to provide the convergence of the
series (20), the higher harmonics should be taken into account (see Table 1). Finally, the values hK �I i�e�
for the solids containing SO-array �a1 � a2 � 8a3, N � 1�, BC-array �a1 � a2 � 4a3, N � 2� and QR-
array �N � 16� are presented in Fig. 5. In the last case, K �I was averaged over all the cracks within the
unit cell and over 30 structure realizations. These data, above all, again demonstrate clearly the
structural sensitivity of this parameter.

5. Concluding remarks

The method presented here is accurate and e�cient from the computational standpoint. To our
knowledge, this is the ®rst time when a complete solution is obtained for the elasticity problem
containing periodically distributed penny-shaped cracks. The model considered is general enough and
provides modeling of both the periodically and randomly cracked solids. As calculations show, the
mechanical properties of a cracked body appears to be structure-sensitive parameter: this suggests that
the structure parameters should be taken into account to a maximum possible extent. To this end, a
certain experimental data or physical assumptions relating the structure parameters are required to
choose the geometrical model, approaching the microstructure of actual material and, thus, to provide a
reliable prediction of its e�ective sti�ness and strength.
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Appendix A. Partial vectorial solutions of the Lame equation in spheroidal coordinates

The following partial vectorial solutions of Eq. (2) have been derived by Kushch (1996): constrained
at krk41, or singular S

�i �
ts �S

�i �
ts �r, f �:
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S
�1�
ts � e1F

sÿ1
t�1 ÿ e2F

s�1
t�1 � e3F

s
t�1; S

�2�
ts �

1

t

�
e1�t� s�F sÿ1

t � e2�tÿ s�F s�1
t � e3sF

s
t

�
;

S�3�ts � e1

n
ÿ �xÿ iy�D2F

sÿ1
tÿ1 ÿ

hÿ
x�0�

� 2ÿ1iD1F
s
t � �t� sÿ 1��t� s�bÿ�t�1�F sÿ1

tÿ1

o
� e2

n
�x

� iy�D1F
s�1
tÿ1 ÿ

hÿ
x�0�

�2ÿ1iD2F
s
t ÿ �tÿ sÿ 1��tÿ s�bÿ�t�1�F s�1

tÿ1

o
� e3

h
zD3F

s
tÿ1

ÿ
ÿ
x�0�

�2
D3F

s
t � �t� s��tÿ s�bÿ�t�1�F s

tÿ1

i
;

�A1�

constrained at krk40, or regular s
�i �
ts �s

�i �
ts �r, f �:

s�1�ts � e1f
sÿ1
tÿ1 ÿ e2f

s�1
tÿ1 � e3f

s
tÿ1; s�2�ts �

1

t� 1

�
e1�tÿ s� 1�f sÿ1

t � e2�t� s� 1�f s�1
t ÿ e3sf

s
t

�
;

s�3�ts � e1

n
ÿ �xÿ iy�D2f

sÿ1
t�1 ÿ

hÿ
x�0�

�2ÿ1iD1f
s
t � �tÿ s� 1��tÿ s� 2�btf sÿ1

t�1

o
� e2

n
�x

� iy�D1f
s�1
t�1 ÿ

hÿ
x�0�

�2ÿ1iD2f
s
t ÿ �t� s� 1��t� s� 2�btf s�1

t�1

o
� e3

h
zD3f

s
t�1

ÿ
ÿ
x�0�

� 2
D3f

s
t ÿ �t� s� 1��tÿ s� 1�btF s

t�1

i
;

�A2�

where

bt �
t� 5ÿ n

�t� 1��2t� 3� ; t � 1, 2, . . . ; sjRt:

In Eqs. (A1) and (A2), the following notations are used:

e1 �
ÿ
ex � iey

�
=2, e2 � Åe1 �

ÿ
ex ÿ iey

�
=2, e3 � ez;

D1 � �@=@xÿ i@=@y�, D2 � �D1 � �@=@x� i@=@y�, D3 � @=@z: �A3�
The functions F s

t�F s
t�r, f � and f s

t� f s
t�r, f � are the singular and regular, respectively, solid spheroidal

harmonics, appropriate form of whose in oblate case is

F s
t�r, f� � it�1Qÿst

ÿ
i�x
�
Y s

t�Z, j�, f s
t�r, f� � iÿtP ÿst

ÿ
i�x
�
Y s

t�Z, j�,
where Y s

t�Z, j� � Ps
t�Z� exp�isj� are the scalar surface harmonics and Ps

t and Qs
t are the associated

Legendre polynomials of ®rst and second kind, respectively.
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